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Introduction 
In the project we are searching after an exact definition of a Möbius Strip and its unique properties. In a 

simple case we can create the Möbius Strip, if we take a strip of paper, turn it 180 degrees, and glue the 

ends together. But how do we define the shape mathematically? Which properties we need before we can 

classify a given shape as a Möbius Strip? Has the strip a specific value of Gaussian curvature?  

We try also to prove mathematically that the Möbius Strip can fold out like a two-dimensional plane in a 

space. We know that the shape is determined by the bending energy is minimal, and although no one 

knows the exact shape, one can find an approximation by using the differential geometry and optimization. 

We want to investigate about the bending energy of the strip is really minimal and so illustrated the 

bending energy in the strip like the figure below. From the figure 1 we can assume that the bending energy 

becomes larger, if the width of the strip is larger. 

 

Figure 1 The bending energy in the Möbius strip with three different widths. 

From there we are interesting to know, how wide the strip may be without to intersect. Have the length of 

the mean curve and the number of rotation round its mean curve an impact on how wide the strip may be? 

For these tasks we use Maple and MATLAB to illustrate and solve the problems. 

Have a good reading! 
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Theory 
In the following we consider the Euclidean 3-space.  

The Möbius Strip as a Ruled Surface 
A plane piece of paper can be wrapped on a cylinder in the obvious way without crumpling the paper. If we 

draw a curve on the plane, then after wrapping it becomes a curve on the cylinder. Because there is no 

crumpling, the lengths of these two curves will be the same.  

It means that we will observed that a plane and a generalized cylinder, when suitably parameterized, have 

the same first fundamental form, since the lengths are computed as the integral of the first fundamental 

form. The first fundamental forms of the two surfaces are the same. 

Let                   be a curve in the surface patch  , its arc-length starting at a point       is given 

by 

            
 

  

 

By the chain rule,              , we get 

              

                       

                                                 

          
                                   

  

          
                        

  

                  

Where 

              
                          

  

Therefore the length of the curve is 

                      
 

  

 

If we substitute the    inside the square root with 

 
  

  
 
 

           

  

  
 
  

  
            

 
  

  
 
 

           

So we write 
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We see that   is the integral of the square root of the expression, called the first fundamental form of  , 

                  

The first fundamental form will change when the surface patch is changed. 

Example 1 

A generalized plane in    can define by 
               

 
With   and   being perpendicular unit vectors, we have      and     , so 
 

      
                                 

          
 
Hence the first fundamental form of a plane is simply 

                         
 

 

Example 2 

A generalized cylinder in    can define by 
               

 
With   being an unit-speed and   is a unit vector. We can assume that   is contained in a plane 
perpendicular to  . Then we have       and     , so 
 

      
      

                             
          

 
Hence the first fundamental form of a cylinder is simply 

                         
 

 

Note that we have proven that first fundamental forms of the two surfaces, a generalized plane and a 

generalized cylinder, are the same. We have the definition 

Definition 1 

If    and    are surfaces, a diffeomorphism         is called an isometry if every curve in    
transforming to curves in    have the same length, i.e. the same first fundamental form. We say that    
and    are isometric, if the mapping   is isometry. 
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Now we use the definition and the generalized ruled surface to find when a Möbius strip is isometric to a 

generalized plane. 

From [1] (page 1) we know that a generalized ruled surface in    is defined by 

                  

With the base curve        and the director curve            and the scalar   that generates the 

rulings. The Möbius strip belongs to the characterization, since the strip is made by a flat paper and the 

paper can be generated by the ruled surface. 

Note if         for all     we can reduce the expression such that   is a constant speed vector, i.e.: 

               

The expression is like to the characterization of a cylinder in   . Therefore the phenomenal is called a 

cylindrical ruled surface.  

Let us assume a ruled surface. By simplifying the case we assume that      and      are respectively an 

unit speed vector and an unit vector, i.e.           and         , because this assumptions do not 

give a loss of generality. Notice that by the chain rule the assumption          implies that 

               for all    . 

 

  
         

 

  
              

  
     

  
             

     

  
  

   
     

  
         

We find the first fundamental form of the generalized surface: 

          

                   

                             

                               

                           

          

             

                 

          

       

      

The ruled surface with the unit vector   and the unit speed vector   gives 

                                      

The first fundamental form of a generalized plane in    is 
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Notice! It is important to choose the parameterization carefully; the vectors that span the plan in   have 

to be unit orthonormal vectors. If the vectors are not unit or orthonormal – like the two last cases in the 

illustration below – then we do not get the first fundamental form             . See the two 

examples to understand why. 

 

 

 

 

Figure 2 Span the space    with unit orthonormal basis (left),  

non-unit orthonormal basis (center) and unit non-orthonormal basis (right). 

Example 3 

Let a plane in    be define by 
               

 
With   and   being perpendicular non-unit vectors, we have      and     , so 
 

      
                                 

          
 
Hence the first fundamental form of a plane is  

                         
 

 

Example 4 

Let a plane in    be define by 
               

 
With   and   being non-perpendicular unit vectors, we have      and     , so 
 

      
                                 

          
 
Hence the first fundamental form of a plane is  

                         
 

 

Therefore unless otherwise stated we shall assume that every Möbius strip in the space is suitably 

parameterized. There exists an example where a Möbius strip is not correctly parameterized. We can 

illustrate the case. 
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Figure 3 The upper case is the correctly parameterized Möbius strip, while the lower  

case is the incorrectly parameterized Möbius strip. The red line is the base curve. 

A Möbius strip which is correctly parameterized and is isometric to the generalized plan is called a flat 

Möbius strip. But if the strip doesn’t satisfy the condition although it is correctly parameterized, the strip is 

not a flat Möbius strip. So the flat Möbius strip belonging to the generalized ruled surface, is according to 

definition 1 isometric to the plane if and only if it satisfies 

                                          

For all   and  .  

The geometrical interpretation of   is the Möbius strip is flat if    and    both are perpendicular to  , 

because we have          in   and          as a consequence of   is unit vector,    is in the same 

plane as   . See the illustration below.  

 

Figure 4 A simple system of vectors in the ruled surface for any Möbius strips. 

The equation of   leads us to 

                      

                      

Hence 
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Therefore if we want to use the ruled surface to describe the flat Möbius strip we need to satisfy the 

following conditions 

                    and          

With           and         . 

Example 5 

Let a simply band in    be defined by 

        
      

      
 

    

 

  
 

    
 

 
        

    
 

 
        

    
 

 
  

  
 

 

With          and          for    . The figure of the band is illustrated in the figure 2. 
 
We obtain  
 

    
       

      
 

    

 

 
 
 
 

 
    

 

 
             

 

 
        

 
 

 
    

 

 
             

 

 
        

 

 
    

 

 
 

 

 
 

 and    

 

 
 
    

 

 
        

    
 

 
        

    
 

 
 

 

 
 

, 

so 
 

      
           

 

 
      

 

 
      

 

 
                     

     

 
The first fundamental form of a generalized plane is 
 

                         
 

Since        
 

 
      

 

 
      

 

 
   does not give zero for all          and          for    , 

the first fundamental form of the band is not the same as the generalized plane. Therefore the band is not 
a flat Möbius strip. 
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Figure 5 The “non-flat” Möbius band from Example 5,  

where the blue line in the band is the base curve.  

This example shows that it is not always easy to judge a strip based on the view of the geometrical figure, 

about a Möbius strip is flat or not. Every view can mislead. We can just claim that any not-orientable ruled 

surface, which has a closed base curve, is a Möbius strip, but we cannot be sure that the strip is flat.  

It can be a little hard to find the correct examples based on the information                     and 

        , then we still need to improve the hypothesis. To be able to improve the hypothesis, we need a 

new definition. 

Definition 2 

Let        be a surface patch with first and second fundamental forms 
 

                                        
 
Respectively, where                       and            with 
 

   
     
       

 

 
Then the Gaussian curvature is 

  
     

     
 

 

 
Figure 6 The geometrical interpret of the Gaussian curvature. 
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From [1] (page 8) the Gaussian curvature of a ruled surface satisfies     everywhere.The figures above 

show that any ruled surface without cluster points can only be either a cylinder or a hyperboloid. Here we 

can see the usefulness of the Gaussian curvature.  

The Möbius strip has the same first fundamental form as the generalized plane and is a cylindrical ruled 

surface. By this way we conclude that the Gaussian curvature of the strip has to satisfy    , which means 

that we have to find a ruled surface that according to definition 2 satisfies        . 

Let the ruled surface be defined by                   , so 

            

      

                  

              

               

        

      

The standard unit normal of the surface is  

   
     
       

 
           

             
 

The second fundamental form is: 

           

 
                       

             
 

           

   

           

 
                

             
 

 
                     

             
 

 
         

             
 

Hence 

        
         

             
 

 

   

Which leads to the expression 

            

Note with the new expression we can improve the geometrical interpretation of the ruled surface. 
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As we know we have          and          for the flat Möbius strip. Therefore we illustrate the 

figure below.  

 

Figure 7 An improved system of vectors in the ruled surface for any flat Möbius strips. 

The second way to find the Gaussian curvature equal to zero is using the distribution parameter   and the 

line of striction    

Definition 3 

Let the ruled surface in    be defined by                    with the unit vector  . 
 
We call a curve             the line of striction, if it satisfies                . 
 
With the parameter of the curve                     for some real-value function       , the 
line of striction of the surface is defined by:  
 

    
       

       
   

 
If the surface is non-cylindrical, it has been known that there exists the line of strictions uniquely. Its points 
are called the central points of the ruled surface. If the surface is cylindrical, i.e.     , we have the line 
expressed as    . 
 

 

Definition 4 

Let the ruled surface in    be defined by                    with the unit vector  , so the 
distribution parameter for the ruled surface is expressed as 
 

  
         

     
 

With the line of striction  . 
 

 

By using definition 3 and 4 we conclude that the distribution parameter of a cylindrical ruled surface is  

   

   

 

    



 
14 

  
         

     
 

In any ruled surface the Gaussain curvature can according to [1] (page 8) write as 

  
   

        
 

This show that the Gaussian curvature of a ruled surface satisfies    . Since     if and only if    , 

i.e.   is zero only along those rulings which meet the line of striction. In the cylindrical ruled surface   is 

zero only along those rulings which meet the base curve. The distribution parameter is zero if and only if 

            

From [1] we have the theorem: Let                    be a ruled surface with         . Let 

                    be a curve on       , where   is the arc-length of     . Consider the following 

three conditions on     : 

      is a line of striction of       . 

      is a geodesic of       . 

 The angles between       and      are constant. 

If we assume that any two of above three conditions hold, then the other condition holds. 

Since we have found that the base curve   is a line of striction in the cylindrical ruled surface, and the 

angles between    and   are constant, we conclude that the base curve is a geodesic.  

By using the proposition 8.2 in [2], where it is said that a curve on a surface is a geodesic, if and only if its 

geodesic curvature is zero everywhere, we conclude that the base curve in the cylindrical ruled surface has 

zero geodesic curvature everywhere. 

Definition 5 

Let    be the standard unit normal of the surface patch        given by 
 

   
     
       

 

 

The normal curvature and the geodesic curvature of a unit-speed curve                   in the 

surface patch, is defined by 
           and               

 
Respectively. Since    and       are perpendicular unit vectors we get 
 

        
    

  

 
Hence, the curvature                      of   is given by      
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Since geodesic curvature is zero everywhere in the base curve, we observe      
          

 , and 

              
   

Since the standard unit normal    of the surface patch is defined by    
     

       
, we have 
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The Frenet-Serret Equation of the Möbius Strip 
Our main interest in this title will be to research, how we can express a curve      with non-vanishing 

curvature in the ruled surface        for Möbius strips with the Frenet-Serret parameter        , such 

that there exists one unique flat ruled surface, i.e. 

                                   

The main idea here is to use the curve   as rulings   in the ruled surface  . To able to treat the hypothesis 

we use the following definition. 

Definition 6 

Let the Frenet-Serret parameter         along a regular unit-speed curve        satisfy         and 
the cross product relations 
 

                  
 
Where            is the tangent vector,                 is the binormal vector of   and   is the unit 
principal normal of  . 
 
These parameters give the Fernet-Serret equations 
 

  

  
  

 
 
 

  
      

   

 

 
Where                   is the curvature and   is the torsion of   is                      .  
 

 
 
 
 
 
 
 
 
 
 

Figure 8 The influence of the curvature and the torsion. 
 

 

A given curve with non-vanishing curvature there exists one unique flat ruled surface on which this curve is 

a geodesic.  

              
     

    
                              

The rectifying developable has the same normal vector as the principle normal vector of the center curve 

along the center curve. In the case of the cylindrical ruled surface the center curve is the base curve. 
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Let the ruled surface be defined by                    with           and         , so 

            

      

Put Fernet-Serret in the expression of   we get: 

              

where            and arbitrary functions       ,        and       . The expression gives 

                           

                               

                             

                               

Our ruled surface has the Gaussian curvature     everywhere, therefore 

            

                                               

                                                  

                                        

We know that                                          , then 

                                   

  and   are unit vector for all  , so we have a different equation in the system 

                         

Equation 1 

 
                       

 

 

The geodesic curvature is zero everywhere, so the next condition is  

              
                    

The first equation in the Fernet-Serret equations is      , therefore 

                

Where 

                                        

                

Hence 
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It leads us to 

                                                                  

                                                                

                                                   

                                    

                             

Equation 2 

 

                           

 

 

The two equations are 

 
Equation 1: 

                       
Equation 2: 

                           

 

 

The geodesic condition is satisfied only if the curve is the base curve, i.e.    . Therefore Equation 2 gives 

    everywhere, hence also      and 

 
Equation 1*: 

            
 

 

We are not interested in the obvious solution to the system as    , then we assume that    , hence 

Equation 3* gives 

        

      

There exist many solutions to the expression, but we can choose     and     then we finally get  
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                  with           . 

If one instead of chooses the ruling      
 

 
   , i.e.       for     the parameter   is the geodesic 

distance to the base curve. There exist examples that can illustrate the situation like the figure below. 

   

              
 

 
                          

Figure 9 A surface with the base curve                             

If we want to have   to be a unit vector, then 

        

                           

                            

          

It means that for   
 

 
    we have 

 
 

 
 
 

          

The result tells us that   
 

 
    can only be a unit vector, if the torsion of the surface is zero along the 

geodesic, i.e. the base curve. Consequently is the base curve is planar. 

Now we make use of the following examples to prove that the parameter   in the first surface in the figure 

above is the geodesic distance to the base curve, while the parameter   in the second surface doesn’t that. 
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Example 6 

We define a curve   on a surface   such that                  , then we find 

 
             
                                             
      

                
            

 
A curve is geodesic, if the geodesic curvature is zero 
 

              

       
                

                            
 
  is a ruling, if           , i.e.     , hence also     . 
 

         
                

 

So for a surface defined by                   with      
 

 
   , we have 

 
     
       

    

    
       

  
   

 

 
      

  
       

  
         

  
       

  
   

     
    

                    
  

    
       

  
    

  
    

                    
  

     
       

  
   

 
Which lead us to 
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We determine the following expression 
 

                
       

  
      

         
       

  
  

 

    

        
       

  
  

 

  

 
Therefore we find 

         
                  

 

The result shows that the parameter   in               
 

 
     is the geodesic distance to the 

base curve. 
 

 

Example 7 

Now for a surface defined by                   with           , we have 
 

     
       

    
                   

                 
         

                        
                     
                      

Which lead us to 
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We determine the following two expressions 
 

     
                                      

                    

        
                              

          
          

 
And 

                            

                       

                    
Therefore we find 
 

         
                

           
                            

                      

           
                       

                 

          
                        

                       

                         

 
Here we can think that we can’t guarantee that the geodesic curvature is zero along the ruling  , thus it is 
not sure that   is the geodesic distance to the base curve. 
 

 

For rectifying developable ruled surface         with      
 

 
    we check 
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We can conclude that        , if and only if    , 
       

  
   or    . The second condition can 

reformulate such that 

       

  
   

 

  
 
 

 
    

 

 
   

With an arbitrary constant  . 

 

  



 
24 

The Bending Energy in the Möbius Strip 
In this section we calculate, how much a given Möbius strip is bending. There exists a quantitative calculate 

of how much a given surface deviates from a round sphere, and it is called Willmore energy or is also called 

the bending energy. The energy of a smooth closed surface   is defined by 

           
 

 

Where   is the mean curvature,   is the Gaussian curvature, and    is the area form of  . The formula for 

the element of area of   is a part of the surface integral. To define a surface integral, we have taken a 

surface  , where   and   varies over a region   in   -plane. Since we assume the surface   is smooth, we 

get        , which is the area of the parallelogram with sides    and    by the concept of cross 

product. Hence  

               

                    

                        
      

            

Therefore the energy is 

                  
 

   

The bending energy is always greater or equal to zero. 

Let a flat ruled surface in    be defined by 

                  

With the ruling          
   

 
    

 

 
         

   

 
     for    , i.e.      

 

 
   . The 

parameters   and   in the surface are both geodesics, so we can define the region as a rectangle, i.e. 

                
 

 
 
 

 
 . 

The first fundamental form of the surface is 
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and the second fundamental form 

           

          
       

  
       

                      

  
    

        
       

  
        

        
       

  
   

      

           

   

           

      
       

  
    

   

Which leads us to the two expressions 

         
 

 
 
 

     
 

 
   

 

   

                

Therefore we get the mean curvature: 

  
         

        
 

 
     

  
 

  
  

   
 

And not surprising we get the Gaussian curvature     everywhere. So the bending energy becomes 
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Let us assume a new function   
 

       
, so we have 

  
 

 
     

 

 
 
 

   
 

 
 

  
 
   

  
   

    

  
 

 

 

 
 

 
     

 

 
 
 

   
 

         
 

   
  
      

     

  
 

 

 

 
 

 
     

 

 
 
 

   
 

        
 

    
       

 

    
    

 

 

 

 
 

 
              

  
 

    

  
 

    

   
 

 

 

 
 

 
              

      

      
   

 

 

 

The result shows the bending energy is zero along the base curve,    , and is going numerically to 

infinity, if the value of   is going numerically to     . To get a non complex number of the bending energy, 

we have to demand that the width of the strip is bounded by the interval     
 

 
 
 

 
  with         . 
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The Minimal Bending Energy 
There are many different Möbius strips, but we are interesting in strips that give minimal bending energy. 

How we can find these? 

It is a method that can tell us, how we can draw a smooth centerline at every Möbius strip through a given 

number of points (called control points) without to use too much bending energy? The method use 

interpolation technique to analyze and correlate the knots efficiently. The method is called cubic spline 

curve. It allowed us to describe a complex smooth curve with relativity simplex piecewise cubic polynomial 

functions. From high school we know that the polynomials have the general form  

                    

which the degree of a polynomial corresponds with the highest coefficient that is non-zero, e.g. if   is non-

zero while the coefficients   and higher are all zero, the polynomial is of degree two. If   is the highest non-

zero coefficient, the polynomial is called cubic. The degree three polynomials are most typically chosen to 

building a smooth curve, because it is the lowest degree polynomials that can support an inflection and 

polynomials with degree higher than three tend to be very sensitive to knots. The essential idea of the 

cubic spline can shortly describes by the following definition and is illustrated in figure 10. 

Definition 7 

Let            be given knots. A function   is said to be a cubic spline on the interval        , if 
     and     are continuous in        , and   is a polynomial of degree three or less in each knot interval 
          for        . 
 

 

It means that the spline   has   cubic polynomials, 

     

 
 

 
                

     
         

                
     

         
  

                
     

           

  

Here we see that each    has four coefficients, so there are    coefficents to be determined, but the 

continuity requirements give        conditions, 

 
               

  
          

     

  
           

      
           

So now we have               degrees of freedom. We choose to require that the spline has to 

interpolate in the knots,             for          . The decision gives     conditions, which 

remains two conditions to us. 
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Figure 10 The cubic spline 

The correct boundary conditions of the two remaining conditions will be: 

  
             

  
             

But here we want to use the periodic boundary conditions, i.e.   
          

        for      . The 

periodic boundary conditions are used for interpolation of periodic function. We already have periodicity of 

the knot values of   itself from the conditions                          , and the extra conditions 

ensure that the first and second derivative also are periodic. 

Naturally there exist other conditions, e.g. natural spline, “Not-a-knot” and so on, but right now we have 

not need to concentrate on these, because we are only interested in producing a cubic spline of the 

centerline at the Möbius strip. The centerline is closed therefore can describe of a periodic function. How 

we use the spline in three dimensional will be explained later in this chapter.  

If we prescribe that               and           for          , we can expect that the interpolation 

property and the continuity of   are satisfied. The continuity of    is satisfied if and only if   
            

  

and   
        

  for          . We don’t know all slopes    
   in the knots, but to our lucky we can use 

Hermite interpolation with of degree three to determine the slopes    
   . Suppose the polynomial 

                
     

  

Where   
      

  
 with           . Note that            and             . 

If we try to derivate      , we get 

  
     

            
 

  
   

      
        

  
  

As said we need to satisfy the condition   
           

       at the interior knots, which is equivalent to 

       

  
  

     

    
  

For            . From the book [21] we know that the Hermite interpolation gives 
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We put expressions of    and    into the conditions, so we get 

  
       

  
  

     
     

 

  
  

       

    
  

   
       

 

    
 

     
     

 

  
 
   

       
 

    
   

       

    
  

       

  
   

After we multiply the equation with         , we have 

         
     

         
      

      

        
              

        
     

for            , where 

       
       
    

     
       

  
  

Since this is a system of     linear equations in the     unknowns    
  
   

 
, we have as predicted two 

degree of freedom. A periodic spline must further satisfy the two equations               and 

                and . The left side of the first condition is 

         
      

  
  
   

  

While the right side is 

         
      

          
  

   
  

This condition leads to the simple expression   
    

     where     . 

And the left side of the second condition is 

          
       

   

  
   

     

  
  

   
     

 

  
 

And the right side 

          
       

       

  
   

       

  
  

     
     

 

  
 

This condition leads to  
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Now we multiply the equation with       , so we have 

       
     

         
    

      

     
      

        
       

     

Where        
     

  
   

       

  
 . 

We can write the system in matrix form for the periodic spline 

 
 
 
 
 
 
            

  

   

     

                
      

 
 
 
 

 
 
 
 
 
  
 

  
 

 
    
 

  
  
 
 
 
 

 

 
 
 
 
 
  
  
 

    
   

 
 
 
 

 

Remember a continuous function can be periodic if and only if            . 

Now we can use the set    
  
   

 
  to solve the coefficients 

        

         
  

                      
    

   

                     
    

   

Thereafter we use the coefficients to calculate the cubic spline     . With the extra conditions as periodic 

boundary conditions or otherwise leads to a well-defined set    
  
   

 
, and thereby a unique interpolating 

cubic spline. 

Example 8 

It exist a simple example of cubic spline. Suppose we want to make a periodic curve that is running 
through the four control points                        . We observe that the endpoints are joined, so we 
can use the periodic cubic spline. In this case the spline generates the matrix equation 
 

 

 
   

  
 

 
  

   
  

 

 
 
 
 
  
 

  
 

  
 

  
  
 
 
 

  

 
 
  
 

  

 
where it satisfies            ,   

       
     and   

        
      at the point    .  



 
31 

 
Figure 11 The periodic cubic spline with four knots in one dimensional. 

 

 

It is important to remember, that we can only use the cubic spline, if the number of knots is equal or larger 

than three. And it is not worth to use the cubic spline, if all knots have the same value, because it gives 

always (not surprising) a straight line as the minimal bending energy curve. 

There exists a proof that shows, that the cubic spline      among all functions   that are twice 

continuously differentiable on the interval      , and that interpolate a given smooth periodic function   in 

the points               , minimizes the integral  

            
 

 

 

Says in another way we will show, that           
 

 
           

 

 
. We begin to consider 

                    
 

 

           
 

 

           
 

 

                 
 

 

 

           
 

 

           
 

 

                          
 

 

 

By using the partial integration in the last integral for the contribution from the  th interval reveals 

                           
  

    

 

                      
    

                          
  

    

 

We know that             for          , which is a constant, and               for all   because 

they are both interpolated to   at the points   , i.e.             and            , so 
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Consequently is 

                        
 

 

            

                 
                       

      

                 
                           

          

          
       

                  
         

         

                 
                       

       

For a smooth periodic function we know that               and                , then we can assume 

that              ,   
             and                . Thus we have 

                        
 

 

   

Now we can insert this result in the reformulating of the expression of  : 

          
 

 

           
 

 

                     
 

 

                          
 

 

 

           
 

 

                     
 

 

 

           
 

 

 

The minimum is obtained when                 for      , i.e.                 , where    

and    are arbitrary constants. But the interpolation condition involve that             for all   if and 

only if        , therefore          . 

A reason why we are saying a smooth periodic function is that we want to make a function (naturally in 

three dimensional) that looks like the base curve at the Möbius strips. The base curve is a smooth closed 

curve, it is why.  

However, if the function   is not required to be smooth periodic and   is required not only to interpolate 

the given points, but also to satisfy the boundary conditions             and            , then the 

same integral is minimized, when          , the interpolation cubic spline with correct boundary 

conitions. However also, if the function   is not required to be smooth periodic, and again the same 

integral is minimized, when boundary conditions of the interpolation cubic spline is natural. 
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We now know how to make a function from a set of knots by using the periodic cubic spline curve. Now we 

want to extend these ideas to arbitrary curves in two or three dimensional space. 

In three dimensional the polynomial curves have the general form: 

                   

                
        

   

                
        

   

                
        

   

  

We write three systems of linear equations for  ,   and   coordinates separately. Each system is solved by 

following the same process as we have used in the previous. The only major difference being that we solve 

three linear systems instead of one with the independently variable is  . I.e. we write the system like here: 

 
 
 
 
 
 
            

  

   

     

                
      

 
 
 
 

 
 
 
 
 
   

 

   
 

 
     

 

   
 

   
 

   
 

 
     

 

   
 

   
 

   
 

 
     

 

   
  
 
 
 
 

 

 
 
 
 
 
   
   
 

     
   

   
   
 

     
   

   
   
 

     
    

 
 
 
 

 

It is a point to consider. In a space, it is quite possible for a curve to join back on itself to make a closed 

curve. If we have the situation, we enforce   ,    and    continuity where the curves joins, then we have 

all the equations needs without to enter any slopes. 

    continuity means the two segments match values at the join. 

    continuity means they match slopes at the join. 

    continuity means they match curvatures at the join. 

If a spline satisfies the all three conditions, the segments in the spline match torsion at the join. The 

definition of the torsion is determined by the slope and the curvature. 

Like in the one dimensional space the elasticity of the cubic spline in the three dimensional space with the 

constraint of the knots will cause the strip to take the shape that minimized the energy required for 

bending it between the fixed points. 
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Making the base curve with the cubic B-spline 
Our primary problem by using the interpolated technique described above is, that it can be hard to 

generate a base curve which gives a nonorientable (will be explained later) ruled surface like Möbius strip. 

To our lucky some scientists have investigated the technique further and get a fine result. The new 

technique is called B-splines. B-spline is a spline function that has minimal support what it regards degree, 

smoothness and domain partition.  

The cubic spline   can expressed as a linear combination of basis splines    , so-called cubic  -splines. 

               

 

 

Where    are the control points. The definition of the basis splines is written here: 

Definition 8 

Let    be knots. We define the  -splines by the expression 
 

         
           
           

  

And for        : 

        
    
       

          
        

           
            

 

 

Here is an example of the B-splines. 

Example 9 

For a  -spline with the degree     in the interval         we get 
 

        
    
       

        
      

         
          

  

    
       

          

           
   

      

         
            

           
  

 

 
 
 

 
 

     
    
       

         

      

         
           

       

  

 

 

With     or more the expression becomes more complicated, then we don’t write it here, but we can 

illustrated the functions. 
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Figure 12 The B-spline with the degrees          . 

The degree   indicates how many knots the B-spline want to “jump over”. On the figure we recognize that 

B-spline with     as a linear spline. It jumps over only a knot. For the quadratic spline it jumps over two 

knots, etc. 

How it jumps over the knots depends on the degree and how the knots are placed relative to each other. 

For the cubic B-spline we can consider the shape like here: 

 
Figure 13 The cubic B-spline with a various multiplicities. 

If there is 4-fold knot or more, the cubic B-spline is going to end there.  

An advantage by using the cubic B-spline is, that it is easy to differentiate. The  -derivative of the B-spline is 

    
       

        
        

       
 
             

      

       
 
          

        

           
 
                   

      

           
 

Where         and     
         for all  .  
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Example 10 

For     we get 
 

    
     

         

       
 
             

    

       
 

           

           
 
                   

    

           
 

 
With     the result of the equation is 
 

    
     

       

       
 
           

    

       
 

         

         
 
                 

    

         
 

 
       

       
 

         

         
 

  

 

       
          

           

   

 

         
            

           

  

 

 
  
 

  
 

     
 

       
         

  

         
           

       

  

 

 

Notice that     
         for              . It holds for all  . Look at the illustration below to 

understand why.  

 
Figure 14 The B-splines of various degrees with simple knots and their derivatives. 
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It is illustrated an example of a cubic B-spline with various orders of the fold. The illustration tells us, that 

the order of the fold has no influence on the claim. 

 
Figure 15 The cubic B-spline with a knot of various multiplicities and their derivatives. 

Now we know that how the knots have the influence on the derivatives, then we take a step further in the 

discussion about using B-spline to generate a base curve at the Möbius strip. Which fold is the best to use 

for generating the curve? Is it sufficient to use simple knots during the entire path or have we to use 2-fold 

knots or other similarly techniques? 

We wished to generate a   ,    and    continuity base curve, then the simple knots will be the perfect 

solution, because it is the only one of the four different fold-technique, which is    continuity.  

It is not sufficient to use the simple knots during the entire path. The base curve at the Möbius strip is 

joined back on itself to make a closed curve. Therefore it is a good idea to form the B-splines then it 

becomes periodic and can consider as a closed ring like the figure 16. It means that the axis   is walked 

from    to    and can walks further by walking again from   . In this way we can be sure that the B-spline 

is   ,    and    continuity at the join.  
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Figure 16 The periodic cubic B-spline can reshape to a closed ring. 

To get the B-spline like the box to left in the figure above, the knots have to be placed uniform along the 

axis. The B-spline like the ring to right in the figure above satisfies the following conditions: 

     
              

        

     
              

        

     
              

        

    
            

          

For        . Note that the curve   is defined by 

               

   

   

 

Where it is given a point   belonging the intervals            of the curve. We may remember that 

        is nonzero only in the open interval          . I.e. for a given   in           there are at most four 

nonzero basis splines,                               and        . At a knot there are only three nonzero B-

splines. Thus we can expressed the curve as 

               

   

    

 

But we compute only for the sake of the interval            , which means we only need to include the 

terms with         . If we investigate the definition of B-spline: 

        
    
       

          
        

           
            

We are going to see, that in the interval             the only nonzero B-spline of degree zero is        . 

By increasing the degree we spot, the only nonzero B-spline is           and        . For the quadratic B-

spline there is only                     and        , etc. The computation of that can demonstrated 

excellent as figure 17. 
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Figure 17 Nonzero values in the cubic B-splines when            . 

It is written a consequence in the example below. 

Example 11 

For a given             we find  
 

                                                      
      

         
          

          
      
         

          
      

         
          

          
      
         

          
      

       
        

        
    
       

        

 

 

The example shows that the computation for             involves only knots            , while for 

            involves knots            . It means that for the cubic B-spline with         we 

need two extra knots at both ends. Remember the extra knots must satisfy             and 

          . Often the extra knots are chosen such that they are placed correspondingly with    and 

  . But in our case we choose 
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In this ways the conditions for establishing of a closed ring like figure 16 is satisfied.  

There exists an general equation, which can tell us how many extra knots we need for any degree  . This 

equation is the property of the degree   of the B-spline 

        

Where     is the number of knots and     is the number of control points. 

 

Figure 18 An example of the cubic B-spline with 7 control points and 11 knots  

(a non-closed curve in two dimensions). 

Example 12 

 
To get a cubic B-spline with 7 control points, we need             , hence 11 knots. 
 

 

Note that example 12 is the same as the figure 18. 

Back to our choice of the extra knots. The consequence of the choice is, that we have to choose the 

following control points: 

         

         

      

        

        

to could get a closed curve. It means that now we can be sure that the curve   satisfies            . 

You can see the result in the figure 22. 

In the section about nonorientable we will read that we need at least 7 control points to could generate a 

Möbius strip. It gives us 15 knots which four of them are extra knots using to the computation.  

 

 



 
41 

The Möbius Strip as a Nonorientable Surface 
A smooth surface is called orientable, if the positive normal direction, when given at an arbitrary point of 

the surface, can be continued in a unique and continuous way to the entire surface. Then a sufficiently 

small piece of a smooth surface is always orientable. This may not hold for entire surfaces. It is well known 

that the Möbius Strip is a nonorientable smooth surface, because the normal direction in every point of the 

strip is not unique. Now we try to find conditions for the expression,       
 

 
     with the interval 

        and     
 

 
 
 

 
 , such that it generates a nonorientable smooth surface like the Möbius strip. For 

the closed and smooth base curve we require that the expression satisfies the condition respectively 

          and                 for every    . We can divide the surface in sufficiently small pieces, 

so all pieces are orientable like the figure below.  

 

 

 

 

 

Figure 19 Möbius strip divided in many sufficiently small pieces. 

For a nonorientable strip like the Möbius strips we expect that the torsion has rotated the end of the 

surface with       degrees (or says in the other ways     in radians), where   is the odd number of the 

half-rotation, and let both ends join. Since the surface is smooth the consequence is the standard unit 

normal    at the two endpoints on the strip has this relation: 

                  

Since the base curve is closed and smooth, we have the tangent vector at the endpoints 

     
     

       
 

     

       
      

So the rotation generates the following conditions of the base curve  

           

           

It is illustrated the problem in the next page and the illustration shows, how we get the three conditions 

above. A simplify case of the Möbius strips has the value    .  
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Figure 20 The rotation of the Fernet-Serret vectors at the base curve with the odd number  . 

Perhaps you are tempted to think, that you can achieve this property, if the choice of the ruling      

changes to the ruling  

    
   

 
         

   

 
       

It is added the vector    , because it is perpendicular to  , and so multiply the two vector with 

    
   

 
    and     

   

 
    respectively to get a circular motion perpendicular to the base curve  . 

There are illustrated four examples of this property in the figure below. 

 

 

 

Figure 21 A surface expressed as                    
   

 
         

   

 
       . 

But you have to be carefully, since we need to check about the new ruling can satisfy the two conditions: 

 
Equation 1: 

                       
Equation 2: 

                           

 

 

                

  

  

  

 

 
  

 

 
    

  

 

 
  

  

  

 

 
    

      degrees 

 

    in radians 
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For the ruling          
   

 
    

 

 
         

   

 
    , (notice that    

 

 
      ), we achieve 

the following functions: 

 

  
 

 
    

   

 
    

      
   

 
    

      
   

 
    

 

 

   
       

  
    

   

 
    

   

 
 
 

 
    

   

 
    

   
   

 
    

   

 
    

    
   

 
    

   

 
    

 

  

The first equation                        gives: 

      
   

 
    

   

 
 

The second equation                            gives amazing long equation, which we 

don’t write here. But we can say, that we can by the two equations conclude that the new ruling satisfies 

the two conditions if and only if    . If    , it is not sure that the parameter   is the geodesic distance 

to the base curve. Therefore we can’t guarantee we can define the region as a rectangle, when we use the 

new ruling for    . Or says in the other ways we can’t guarantee the surface with the new ruling want be 

developable. Here comes the cubic b-spline in the picture. In short we will take advantage of the cubic b-

spline and their useful properties to making of the base curve.  

From the previous section we know that a closed curve dependent of our choice for the positions of the six 

control points                       where      . The knots at the curve are uniformly distribution. 

 
Figure 22  

It will be easiest to choose the end points    and    to lie at the point        . We let the point be our 

default point. We can always move the coordinates translational after our desire without to change to 

shape of the curve. 

To satisfy the condition          , we can require that the control points must satisfy  
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Because the tangent vector   involves only   . Since         we can reduce the demand to  

          

The elegant choice will be                 , where     is a point in the  -axis, because we can 

always rotate the coordinates after our desire without to change to shape of the curve. 

The binormal vector at the endpoints            involves    and   , which means 

 
                     

 
 
             

 
 

                 

Since         we can reduce the demand to           Again the elegant choice will be  

                , where       is a point in the  - and  -axis respectively. 

In short our proposal for positions of the control points is 

              

                 

                 

But it is not sufficient with 6 control points to generate a base curve for the Möbius strip. Because the curve 

is running through itself, if there are only 6 control points placing as our proposal. Look at the figure 23. 

 
Figure 23 The cubic spline in three dimensions with only six control points. 

It is not the solution we are searching after, then it is need a control point more. The new control point has 

to be place such that it forces the curve to don’t run through itself. But where have we to place the point? 
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The one of the great thing about the construction of a Möbius strip with paper is, we will see a symmetry 

that can motivate the following expression of the base curve: 

     is odd  -periodic function, for example          
   

 
     

     is odd  -periodic function, for example          
   

 
     

     is even  -periodic function, for example          
   

 
     

The coordinates can obviously change places dependent of the choice, but here we assume just the curve 

has been during a so-called Procrustes Analyze. We have not to think about it now. 

It is therefore often interested to build curves at the Möbius strips after the symmetrical principle. We use 

the knowledge to place the new control point. We can place the new control point either above or under 

the endpoints,            where     is a point in the  -axis, since both choices give symmetry. 

 
Figure 24 The Möbius strip by using the following control points,  

                                                                   

7 control points are therefore the least number we can have to make a Möbius strip. But what does it 

happen, if we increase the number of control points, and how we can place them so the bending energy is 

the least of all bending energy? It is an optimization problem and the next section will be talk about that. 
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The optimization of position for the control points 
Now we need to think about practically problem. How can we be sure that the choice of the position of the 

control points such that the minimal bending energy is the least of all possibly minimal bending energy, i.e. 

how we can optimize the positions? Which mathematic program (MAPLE or MATLAB) is best to calculate 

and plot the bending energy? How we can plot the bending energy with so few inputs/parameters as 

possibly, so the optimization in the mathematic program will have bigger chance to find the correctly 

optimized solution? 

First we talk about the optimization of the positions. We have the bending energy  

  
 

 
              

      

      
   

 

 

 

Where   
 

       
. It is not indeed linear, hence not easy to find a curve, which gives the least bending 

energy of all curves, by using algebra method. It forces therefore us to use the weighted sum an alternative 

method to the integral – numerical calculation – of the bending energy. The numerical optimization can 

solve by mathematic programs. We use MATLAB, since the program is the best design of the two 

mathematic programs I know (MAPLE and MATLAB) to evaluate numerically. We tell the program, what our 

starting guess of control points    and knots    are. Thereafter the program can search after the optimized 

points. If the starting guess is already the optimized solution, then the program doesn’t move them, 

otherwise it moves the starting control points to the optimized points. In the way we can be sure, we have 

the optimized solution. But we have to be careful, because we can only find the solution, if we use a good 

starting guess and the correctly constraints. If the starting guess is bad, we risk getting a not-complete 

optimized result. 

The optimization becomes harder to solve and more sensitive, if we use more control points. Therefore it is 

suggested to use few control points as possible.  From section about nonorientable we know that the least 

number of control points to generate a Möbius strip is 7. It is also a proposal for positions of the control 

points from this section we can use as our starting guess. 

Now we talk about the constraints. If we compared two curves, which is identical with each other expect 

for scaling size - the one is simply a scaling of the second –, we want observe that the scaling have a 

meaning for the optimization. If the one is smaller than the second, the curvature and torsion will be larger 

than the second. But if the one is larger than the second, the curvature and torsion are both smaller than 

the second. Take now a very simply case as a circle with a radius  . Its curvature is      . For   walking 

against infinity, the curvature is going to zero.  

Therefore the program will maybe be tempted to place positions infinity long away from each other in 

searching after the optimization. It gives infinity long the base curve at the Möbius strip, which is not the 

idyllic solution. We need to set a constraint in the optimization, and it is the length of the base curve must 

be a fixed constant. We choose, which length the strip we want to have, before we can begin optimizing. 

We can use the definition of the length  
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as a fixed constraint in the optimization, where the base curve            .  

We have also to remember to get a non complex number of the bending energy. Therefore we add a 

constraint in the optimization. The width of the strip is bounded by         . 

Let us saying we have the bending energy  . We can define a function                          as a 

bending energy of the Möbius strip by using the cubic b-splines with the starting guess knots        
    and 

control points        
   . We tell the MATLAB, that we want to minimize the function   

                 
           

     

Subject to the fixed length             
 

 
 and         .  

Now we have to think, what MATLAB need to know before it could begin to evaluate and optimize the 

bending energy. Beyond the knowledge of the position of the knots and control points the optimization 

needs to know the length   and the width   and four functions: 

          

if we want to optimized the position of the control points. 

We can already evaluate the expression of the first two parameters, curvature and torsion: 

  
       

     
 

  
          

        
 

These tell us that we can calculate the bending energy, if we have the knowledge to the three functions 

        . But what with    and   ? What is the expression of the two parameters, when we use the cubic b-

spline? First we try to discover an expression for the differential of the curvature. 

Let the base curve   at the Möbius strip be determined by the cubic b-splines with control points 

          . We get the following 

              

 

   

          
 

 

   

          
  

 

   

          
   

 

   

  

and 

              

Shortly we will see why it is nice to use the cubic b-splines. 
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And so the differential of the torsion. 

 

  
          

        
 

          

             
 
 

 
 
     

     
 

 

 
        
                     

 

 
     

          
 

N.B! We write        because of the cubic spline. 

 

 
        
            

                 
                      
   

 

 
        
               

                 
         
                

 

 

   
       

  
  

            

      
  

                        

        
 

 

 

Therefore it is sufficient that we have the knowledge to the three functions  
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if we want to find the bending energy by using the cubic b-splines for the base curve   and the Möbius 

strip. We don’t write the bending energy as a function of the three functions here, because it will be a very 

long equation and not a very pretty equation. 

Now we can optimize the position of the control points and get a Möbius strip which gives the least 

bending energy. 
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Results and discuss 
Now we have to discuss the results, which I get by running the MATLAB. 

As an example we choose the following control points 

              

                 

                   

             

With the control points we get a Möbius strip, which is illustrated in the figure 24. Its bending energy 

(before the integration) can see here: 

 
Figure 25 The bending energy in 10-logarithm for the Möbius strip. 

After the integration we get              , which is very little after my opinion. The result gets me to 

think, how the bending energy is as a function of the width. 
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Figure 26 The bending energy as a function of the width of the strip. 

As expectation the figure above shows the bending energy is proportional to the width, but the surprising 

thing is, that the plot seems to be almost line (until the width is about 3). 

I can’t get a Möbius strip with wider band like the strip to right in the figure 1. Because by the figure 27 it is 

noted that the minimum value of        is 3.5. It means that for this case we can’t have   larger than    . 

It is absolute little, since the length of this strip is about 546.338. The missing blue dots in the intervals 

           and            dues to the infinite. The values of        in the intervals are infinite.  

 
Figure 27 The value of        as a function of        .  
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If we use the control points as our starting guess in the optimization with the length           and the 

width      , we get: 

Local minimum possible. Constraints satisfied. 

 

fmincon stopped because the size of the current step is less than 

the selected value of the step size tolerance and constraints were  

satisfied to within the default value of the constraint tolerance. 

 

<stopping criteria details> 

 

 

The length of the strip is : 546.338 

The width of the strip is : 3.5 

With the bending energy E = 4.4781e-05 the optimized control points are :  

points_opt = 

 

         0  105.5584  104.2386   -0.0000 -104.2386 -105.5584         0 

         0         0  105.8173   -0.0000 -105.8173         0         0 

         0         0         0   51.2159         0         0         0 

 

The result tells us, that in this case the optimization doesn’t give a better solution, since the bending energy 

is               which is a bit larger than the origanally. What does it happen, if we change the length 

while the width remains the same? We choose arbitrary the length       and       for the width 

   . The result is 

Local minimum possible. Constraints satisfied. 

 

fmincon stopped because the size of the current step is less than 

the selected value of the step size tolerance and constraints were  

satisfied to within the default value of the constraint tolerance. 

 

<stopping criteria details> 

 

The length of the strip is : 195 

The width of the strip is : 1 

With the bending energy E = 0.00050625 the optimized control points are :  

points_opt = 

 

         0   33.3360   45.0905    0.0001  -45.0905  -33.3360         0 

         0         0   30.2485    0.0001  -30.2485         0         0 

         0         0         0   33.3916         0         0         0 

The length of the strip is : 200 

The width of the strip is : 1 

With the bending energy E = 0.00044557 the optimized control points are :  

points_opt = 

 

         0   34.3668   46.0331    0.0001  -46.0331  -34.3668         0 

         0         0   31.3264    0.0001  -31.3264         0         0 

         0         0         0   33.6935         0         0         0 
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Not surprising the small length gives bigger bending energy. 

We can try to use 8 control points with the desired length           and the width     for the 

following starting guess 

              

                

                   

              

                

It takes a bit time before the optimization is finished. 

Local minimum possible. Constraints satisfied. 

 

fmincon stopped because the size of the current step is less than 

the selected value of the step size tolerance and constraints were  

satisfied to within the default value of the constraint tolerance. 

 

<stopping criteria details> 

 

 

The length of the strip is : 546.338 

The width of the strip is : 1 

With the bending energy E = 1.5769e-05 the optimized control points are :  

points_opt = 

 

0   96.1340   96.4998   49.7896  -49.7896  -96.4998  -96.1340         0 

0         0   95.5635   48.8841  -48.8841  -95.5635         0         0 

0         0         0   48.9982   48.9982         0         0         0 

 

Here we are “lucky” to get the lower bending energy compared to only 7 control points. We are saying 

“lucky”, because it is used the “fail-and-try” method to find a good starting guess (using the symmetry 

principle). 

Now we have to talk about the errors in the results. 
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Figure 28 The missing part of the Möbius strip. 

Although it is clearly sketched a closed curve (the blue curve) in the figure above, always there is missed a 

part of the surface. I can’t explain precious why, but I am sure that it is something to do with code in 

MATLAB, which I have written wrong. 
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Conclusion 
By the results we have founded in theory chapter, we conclude: A surface, that has to be a flat Möbius strip 

with length   and the width  , needs to satisfy the following properties: 

 Belongs the ruled surface:                   , where   is the base curve. 

 Developable:               
    . 

 The Gaussian curvature is zero everywhere. 

 Tangent vector          . 

 Unit principal normal vector           . 

 Binormal vector           . 

 Express as               
 

 
    , where   is the curvature and   is the torsion. Both are 

making of the base curve  . 

The bending energy of the Möbius strip is:   
 

 
              

      

      
   

 

 
. Small length gives larger 

bending energy. The bending is proportional to the width  . The width is numerical bounded by     . 

If it is used a cubic B-spline to generate the base curve of the Möbius strip, then the control points of the 

cubic spline must satisfy following  

 Have least 7 control points (more control points – more sensitive) 

               

                  

                  

            if we use only 7 control points, otherwise other places. 

 Symmetric positions like here: 

 

     is odd  -periodic function, for example          
   

 
     

     is odd  -periodic function, for example          
   

 
     

     is even  -periodic function, for example          
   

 
     

 

 The extra knots and control points 

 

            
            
           
           

         
         
        
        

 

The optimization of the position for the control points is dependent on a fixed length              and 

        . 

By the results we have founded in running of MATLAB program we can conclude that it works, although 

there is a place for improvement. The biggest problem in the results is, that it is not succeeded yet to get a 

very wide band like the strip to right in the figure 1. 
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Appendix A: MATLAB-code 
 

% Test no. 2 
% 
% Find the surface by using the control points at the cubic b-spline 
% 
% Written by: Coilin P. Boylan Jeritslev, 28th June 2011... 

  
clear all; clc; 

  
r = 100; 

  
x = [  0  r  r  0 -r -r  0]; % control points in x-coordinat 
y = [  0  0  r  0 -r  0  0]; % control points in y-coordinat 
z = [  0  0  0  r  0  0  0]; % control points in z-coordinat 

  
points = [x;y;z]; 

  
knots = linspace(0,1,size(points,2)); 

  
d = 5; % width of the band 
i = 0; 

  
steplength = d/100; 

  
for s = 0:steplength:d 
    i= i+1; 

     
    [E(i),f,t,n,b,kappa,tau,ddE(:,:,i),time,Length,border] =    

energy_bending2(points,s,knots); 

     
    % If we get a complex number in the expression of the energy, 
    % we stop the loop. 
    if isreal(E) ~= 1 
        E(i) = []; 
        ddE(:,:,i) = []; 
        s = s-steplength; 
        break 
    end 
end 

  
myplot(E,f,t,n,b,kappa,tau,ddE(:,:,i-1),time,Length,border,s) 
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function [E,f,t,n,b,kappa,tau,ddE,time,Length,border] = 

energy_bending2(points,d,knots) 

  
n = 200; [pp,time] = my_cubic_bspline(points,knots,n,'periodic'); 

  
figure(1) 
plot3(points(1,:),points(2,:),points(3,:),'go'), hold on 

  
for i = 1:size(points,2)-1 
    text(points(1,i),points(2,i),points(3,i),num2str(i)) 
end 

  
f = pp(:,:,1); 

  
plot3(f(1,:),f(2,:),f(3,:)), axis equal square,  
xlabel('x'), ylabel('y'), zlabel('z') 
title('The surface with the blue centerline and the red rulings') 
hold off 

  
d1f = pp(:,:,2); 
d2f = pp(:,:,3); 
d3f = pp(:,:,4); 

  
l(1) = norm(d1f(:,1),2); 
Length(1) = 0; 

  
for i = 2:size(f,2) 
    l(i) = norm(d1f(:,i),2); 
    Length(i) = trapz(time(1:i),l(1:i)); 
end 

  
for i = 1:size(f,2) 
    c1(1:3,i) = cross(d2f(:,i),d1f(:,i)); 
    c2(1:3,i) = cross(d1f(:,i),d3f(:,i)); 

     
    t(1:3,i) = d1f(:,i)/norm(d1f(:,i),2);     
    b(1:3,i) = -c1(:,i)/norm(-c1(:,i),2); 
    n(1:3,i) = cross(b(:,i),t(:,i)); 

     
    kappa(i)  = norm(c1(:,i),2)/norm(d1f(:,i),2)^3; 
    dkappa(i) = (dot(-c2(:,i),c1(:,i)).*norm(d1f(:,i),2)^2. - 

3*norm(c1(:,i),2)^2 

.*dot(d2f(:,i),d1f(:,i)))/(norm(d1f(:,i),2)^5*norm(c1(:,i),2)); 

     
    tau(i)  =    dot(-c1(:,i),d3f(:,i))./norm(-c1(:,i),2)^2; 
    dtau(i) =    -2*dot(-c1(:,i),d3f(:,i))*dot(c2(:,i),-c1(:,i))/norm(-

c1(:,i),2)^4; 

     
    phi(i) = 1 / (dtau(i) * kappa(i) - tau(i) * dkappa(i)); 

     
    if isnan(phi(i)) 
        phi(i) = Inf; 
    end  

     
    border(i) = 2 * abs(kappa(i) * phi(i)); 
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    if isnan(border(i)) 
        border(i) = Inf; 
    end 

     
    v = linspace(-d/2,d/2,11); 

     
    for j = 1:length(v) 
        ddE(j,i) = kappa(i)^2 * ((tau(i)/kappa(i))^2 + 1)^2 / 

(1+v(j)/(kappa(i)*phi(i))); 
    end 

     
    bdE(i) = trapz(v,ddE(:,i)); 

     
    dE(i) = (tau(i)^2 + 

kappa(i)^2)^2*phi(i)*log((2*kappa(i)*phi(i)+d)/(2*kappa(i)*phi(i)-d)); 

     
    if isnan(dE(i)) 
        dE(i) = 0; 
    end  
end 

  
E = 1/4 * trapz(time,dE); 

  

  
end 
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function [s,t] = my_cubic_bspline(c,knots,n,varargin) 

  
C = c; KNOTS = knots; 

  
for i = 2:length(knots) 
    if knots(i) < knots(i-1) 
        error('the knots must not be decreasing') 
    end 
end 

  
if nargin > 3 
    if strcmp(varargin{1},'periodic') 
        x = [ones(1,2)*(knots(end-2)-1) knots(end-2:end-1)-1 knots 1+knots(2:3) 

ones(1,2)*(1+knots(3))]; 
        c = [c(:,end-2:end-1) c c(:,2:3)]; 
    else 
        x = [zeros(1,3) knots ones(1,3)]; 
        c = [c(:,1) c(:,:) c(:,end)]; 
    end 
else 
    x = [zeros(1,3) knots ones(1,3)]; 
    c = [c(:,1) c(:,:) c(:,end)]; 
end 

  
t = linspace(0,1+1/(n+1),n+1); 

  
for i = 1:length(x)-1 
    for j = 1:n 
        if t(j) >= x(i) && t(j) < x(i+1) 
            B(i,j,1,1)= 1; 
        else 
            B(i,j,1,1:4)= 0; 
        end 
    end 
end 

  
B1 = zeros(size(B)); 
B2 = zeros(size(B)); 

  
for k = 1:4 
    for r = 2:4 
        for i = 1:length(x)-r 
            for j = 1:n 

                 
                B1(i,j,r,k) = (t(j)-x(i))/(x(i+r-1)-x(i))*B(i,j,r-1,k); 
                B2(i,j,r,k) = (x(i+r)-t(j))/(x(i+r)-x(i+1))*B(i+1,j,r-1,k); 

                 
                if k > 1 
                    B1(i,j,r,k) =  (k-1)*B(i,j,r-1,k-1)/(x(i+r-1)-x(i)) + 

B1(i,j,r,k); 
                    B2(i,j,r,k) = -(k-1)*B(i+1,j,r-1,k-1)/(x(i+r)-x(i+1)) + 

B2(i,j,r,k); 
                end 

                 

                 
                if isnan(B1(i,j,r,k)) 
                    B1(i,j,r,k) = 0; 
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                end 
                if isnan(B2(i,j,r,k)); 
                    B2(i,j,r,k) = 0; 
                end 
                    B(i,j,r,k) = B1(i,j,r,k) + B2(i,j,r,k); 

                 
            end 
        end       
    end 
end 

  
%for k = 1:4 
%    figure 
%    for r = 1:4 
%        subplot(2,2,r) 
%        plot(t(1:end-1),B(1:end,:,r,k),'r','LineWidth',2) 
%        xlim([0 1]),% axis equal 
%        grid on 
%        title(['B_{i,' num2str(r-1),'}^{ (' num2str(k-1),') }']) 
%    end 
%    hold off 
%end 

  
for k = 1:4 
    for j = 1:n 
        p = zeros(size(c,1),1); 
        for i = 1:length(c) 
            p = p + c(:,i)*B(i,j,4,k); 
        end 
        s(:,j,k) = p; 
    end 
end 

  
t = t(1:end-1); 

  
%for i = 1:size(c,1) 
%    figure 
%    plot(t,s(i,:,1)), hold on, plot(KNOTS,C(i,:),'go') 
%    grid on 
%    title('Spline function by using the base functions and control points') 
%end 
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% Test no. 3 
% 
% Optimize the surface with the given length and width by using  
% the starting guess position to the control points 

  
clear all; clc; 

  
d = 1; 

  
intial_positions = [100;100;100; 50;50;50; -50;-50;50]; 

  
knots = linspace(0,1,floor(length(intial_positions)/3)-1+6); 

  
options = optimset('Algorithm','interior-point','TolX',1.00E-02); 

  
[positions_opt,E] = 

fmincon(@energy_bending3,intial_positions,[],[],[],[],[],[],@mycon,options,d,kno

ts); 

  
if isreal(E) == 1 
    i = 0; 

     
    for s = 0:d/100:d 
        i= i+1; 
        [E(i),f,t,n,b,kappa,tau,ddE,time,Length,border,points_opt] = 

energy_bending3(positions_opt,s,knots);  
    end 

     

     
    fprintf('\n') 
    fprintf(['The length of the strip is : ', num2str(Length(end)), '\n']) 
    fprintf(['The width of the strip is : ', num2str(s), '\n']) 
    fprintf(['With the bending energy E = ', num2str(E(end)),' the optimized 

control points are : ']), points_opt 
    fprintf('\n') 

     
    myplot(E,f,t,n,b,kappa,tau,ddE,time,Length,border,s) 
end 
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function [E,f,t,n,b,kappa,tau,ddE,time,Length,border,points] = 

energy_bending3(x,d,knots) 

  
points = zeros(3,(length(x)-3)/3+6); 

  
points(:,[1 end  ]) = [0 0;0 0;0 0]; 
points(:,[2 end-1]) = [x(1) -x(1);0 0;0 0]; 
points(:,[3 end-2]) = [x(2) -x(2);x(3) -x(3);0 0]; 

  
if length(x) > 3 
    for i = 4:length(x) 
        points(i-floor((i-1)/3)*3,floor((i-1)/3)+3) = x(i); 
    end 
end 

  
n = 200; [pp,time] = my_cubic_bspline(points,knots,n,'periodic'); 

  
figure(1) 
plot3(points(1,:),points(2,:),points(3,:),'go'), hold on 

  
for i = 1:size(points,2)-1 
    text(points(1,i),points(2,i),points(3,i),num2str(i)) 
end 

  
f = pp(:,:,1); 

  
plot3(f(1,:),f(2,:),f(3,:)), axis equal square,  
xlabel('x'), ylabel('y'), zlabel('z') 
title('The surface with the blue centerline and the red rulings') 
hold off 

  
d1f = pp(:,:,2); 
d2f = pp(:,:,3); 
d3f = pp(:,:,4); 

  
l(1) = norm(d1f(:,1),2); 
Length(1) = 0; 

  
for i = 2:size(f,2) 
    l(i) = norm(d1f(:,i),2); 
    Length(i) = trapz(time(1:i),l(1:i)); 
end 

  
for i = 1:size(f,2) 
    c1(1:3,i) = cross(d2f(:,i),d1f(:,i)); 
    c2(1:3,i) = cross(d1f(:,i),d3f(:,i)); 

     
    t(1:3,i) = d1f(:,i)/norm(d1f(:,i),2);     
    b(1:3,i) = -c1(:,i)/norm(-c1(:,i),2); 
    n(1:3,i) = cross(b(:,i),t(:,i)); 

     
    kappa(i)  = (norm(c1(:,i),2)/norm(d1f(:,i),2)^3); 
    dkappa(i) = (dot(-c2(:,i),c1(:,i)).*norm(d1f(:,i),2)^2. - 

3*norm(c1(:,i),2)^2 

.*dot(d2f(:,i),d1f(:,i)))/(norm(d1f(:,i),2)^5*norm(c1(:,i),2)); 
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    tau(i)  =    dot(-c1(:,i),d3f(:,i))./norm(-c1(:,i),2)^2; 
    dtau(i) =    -2*dot(-c1(:,i),d3f(:,i))*dot(c2(:,i),-c1(:,i))/norm(-

c1(:,i),2)^4; 

     
    phi(i) = 1 / (dtau(i) * kappa(i) - tau(i) * dkappa(i)); 

     
    if isnan(phi(i)) 
        phi(i) = Inf; 
    end 

     
    border(i) = 2 * abs(kappa(i) * phi(i)); 

     
    if isnan(border(i)) 
        border(i) = Inf; 
    end 

     
    v = linspace(-d/2,d/2,11); 

     
    for j = 1:length(v) 
        ddE(j,i) = kappa(i)^2 * ((tau(i)/kappa(i))^2 + 1)^2 / 

(1+v(j)/(kappa(i)*phi(i))); 
    end 

     
    dE(i) = (tau(i)^2 + 

kappa(i)^2)^2*phi(i)*log((2*kappa(i)*phi(i)+d)/(2*kappa(i)*phi(i)-d)); 

         
    if isnan(dE(i)) 
        dE(i) = 0; 
    end  
end 

  
E = 1/4 * trapz(time,dE); 

  
end 
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function [c,ceq] = mycon(x,s,knots) 
% The conditions to the optimization of the Möbius strip 
% 
% Input: 
% x     = the initial positions to the control points 
% s     = the desired width of the strip 
% knots = the initial knots to the initial positions. 
% 
% Output: 
% c     = nonlinear inequalities at x 
% ceq   = nonlinear equalities at x 
% 
% Written by: Coilin P. Boylan Jeritslev, 28th June 2011... 

  
% How long the desired length of the strip must be? 195? 200? 
wishlength = 546.338; 

  
[E,f,t,n,b,kappa,tau,dE,time,Length,border,points] = 

energy_bending3(x,s,knots); 

  
c = []; 

  
ceq = [Length(end) - wishlength; ~isreal(E)]; 
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function myplot(E,f,t,n,b,kappa,tau,ddE,time,Length,border,s) 

  
k = size(ddE,1); 
v = linspace(0,s,floor(k/2)); 

  
figure 
plot(linspace(0,s,length(E)),E,'.') 
xlabel('Width') 
ylabel('Energy') 
title('The bending energy as a function of the width of the strip') 

  
figure 
plot(time,border,'.') 
xlabel('t') 
ylabel('2\kappa(t)^2\phi(t)') 
title('The maximum width of the strip as a function of the time') 
grid on 

  
wx = tau./kappa .* t(1,:) + b(1,:); 
wy = tau./kappa .* t(2,:) + b(2,:); 
wz = tau./kappa .* t(3,:) + b(3,:); 

  
figure(1) 
hold on 
plot3(f(1,:)-s/2*wx,f(2,:)-s/2*wy,f(3,:)-s/2*wz,'g') 
plot3(f(1,:)+s/2*wx,f(2,:)+s/2*wy,f(3,:)+s/2*wz,'g') 
plot3([1;1]*f(1,:)+[-1;1]*s/2*wx,[1;1]*f(2,:)+[-1;1]*s/2*wy,[1;1]*f(3,:)+[-

1;1]*s/2*wz,'r') 
grid on 

  
v = linspace(-s,s,k); 

  
figure 
hold on 
surf(ones(k,1)*f(1,:)+v'*wx,ones(k,1)*f(2,:)+v'*wy,ones(k,1)*f(3,:)+v'*wz,log10(

ddE),'LineStyle','none') 
xlabel('x'), ylabel('y'), zlabel('z') 
title('bending energy in 10-logarithm') 
colorbar 
grid on 

 

 


